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Abstract 

In this paper we take a critical look at PDDL 2.1 as de- 
signers and users of plan domain description languages. 
We describe planning domains that have features which 
are hard to model using PDDL 2.1. We then offer 
some suggestions on domain description language de- 
sign, and describe how these suggestions make model- 
ing our chosen domains easier. 

The Loyal Opposition 
PDDL has served as the underpinnings of the Planning 
Competition, and has had an enormous impact on the 
planning community as a whole. PDDL and STRIPS 
have served as a lingua j’ranca for deterministic planning 
domains, making it possible for researchers to compare 
techniques on the same problems and enabling mean- 
ingful comparisons of those techniques. The result has 
been considerable progress in planning algorithms. 

Recently, however, the problems of interest to the 
planning community have changed. Goal achievement 
by itself is no longer enough, and the form of the goals 
has changed as well. Temporal planning requires meet- 
ing goals that include temporal constraints and resource 
cmstraints. While it is possible to model planning do- 
mains with temporally extended state and resources us- 
ing purely propositional modeling languages, it is ex- 
pensive in modeler effort and results in huge domain 
descriptions. By contrast, software domains such as 
data processing, web services integration and and in- 
formation integration generally require incomplete in- 
formation, incompletely known dynamic universes and 
sensing actions, but do not, generally, require rich mod- 
els of time. 

In this paper, we take a critical look at the design 
of PDDL 2.1. Our perspective is that of researchers in 
planning and scheduling who have considerable experi- 
ence in designing and using planning domain descrip- 
tion languages. We will describe planning domains that 
pose problems for PDDL 2.1. We will then describe 
what we believe are the core set of features for mod- 
eling phiiiiiig dorniiiris. We will show how these core 
features simplify the modeling of the domains of inter- 
est. 
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PDDL and its Discontents 
In this section, we describe some domain models and 
their PDDL 2.1 representations, and then discuss rea- 
sons why the PDDL 2.1 model is problematic. 

Temp oral Constraints and Instantaneous 
Events 
PDDL 2.1 requires that propositions hold for a non-zero 
amount of time before they are used as preconditions for 
actions. However, PDDL’s underlying representation 
of states is not based on intervals, and so this makes 
it difficult to specify the interaction between multiple 
events that modify the same proposition. It will also be 
difficult to see what domain axioms resulted in the sep- 
aration of two events that modify the same proposition 
in the final plan. 

Part of the reason for this is that sometimes actions 
require additional constraints t o  decide whether the ac- 
tion sequence is legal, and PDDL 2.1’s semantics forbid 
such plans when there is a possibility of plan execution 
failure. The following example appears in (Fox & Long 
2003) . The model includes action A with preconditions 
P V Q and effect R, and action B with preconditions P 
and effect 7 P  and S. These two actions are considered 
mutually exclusive because a plan in which A and B 
execute concurrently may fail. We might have A and B 
execute at the same time in a state where -Q holds, for 
example. PDDL assumes that the executions of A and 
B are actually ordered, and that the order is arbitrary. 
Thus, if the state happens to be one where -Q holds, 
it may be that B happens first, making A fail both its 
preconditions. 

Modeling this scenario by asserting the intervals of 
time over which P and Q hold, and forcing actions to 
declare how long the precondition must hold, clarifies 
the situation. For example, if A requires P to hold for 
1 unit of time prior to A’s execution, then in order for 
the plan to be legal, B can’t happen at a time that 
makes P true for less than a unit of time. This makes 
it possible to both post and check the constraints that 
II?I?S~ Loid for both A and R to happen concirrently. If 
P has held for long enough, then A and B can happen 
at the same instant, even in a state where 1 Q  holds. 

A related problem is that it is hard to express cer- 
tain temporal constraints in PDDL 2.1. For example, 
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(:durative-action take-picture 
:parameters (?s - satellite ?c - camera ?o - observation) 
:duration (= ?duration 24) 
:condition (and (at start (pointing-at (?s ?o))) 

(at start (on ?c)) 
(at start (stable ?s)) 
(over all (on ?c)) 
(over all (stable ?s)) 

(at start (decrease (energy ?s 5))) 
(at end (increase (energy ?s 5))))) 

:effect (and (captured-but-not-stabilized ?o) 

(:durative-action stabilize-before 
:parameters (?s - satellite) 
:duration (= ?duration 5 )  
:condition (over all (stable ?s))  
:effect (and(at end (stable ?s)))) 

(:durative-action stabilize-after 
:parameters (?s - satellite ?o - object) 
:duration (= ?duration 5 )  
:condition (and(at-start (captured-but-not-stabilized ?o)) 

(at start (stable ?s)) 
(over all (stable ?s))) 

(at end (captured ?o)) ) )  
:effect (and (at end (not(captured-but-not-stabilized ?o)))  

Figure 1: Temporal Constraints in PDDL 2.1 

suppose that an action Take-Picture requires a propo- 
sition stable to hold for a period lasting from at least 
5 seconds before to at least 5 seconds after the Take- 
Picture ends. Furthermore, the camera expends energy 
only during the time of the exposure, which lasts 24 sec- 
onds. During the intervening 5 seconds before and after 
the exposure, the camera could be involved in other ac- 
tivities such as changing the filters, but can’t slew (as 
this results in vibration). 

PDDL 2.1 does not allow direct expression of the 
constraints on stability. As we said previously, there 
is no way in PDDL 2.1 to write a condition that re- 
quires a proposition to  hold for an interval of time. 
Thus, we can’t even require that Stable hold for 5 sec- 
onds before Take-Picture can start. We can write an 
action Stabilize-Before that lasts for 5 seconds, with 
an effect Stable, after which Take-Picture can be per- 
formed. Take-Picture also asserts Stable throughout 
the 24 second interval, and properly asserts that the 
instrument must be on, and affects the power properly. 
Now, however, we must ensure that stability is held for 
another 5 seconds. We can do so by asserting a con- 
dition captured-but-not-stabilized for the observation. 
The only way to assert captured, then, is to execute 
the stabilize-after action. The only remaining problem 
is that these actions should be executed back-to-back 
to enforce our original constraint, and PDDL 2.1 has 
no way of ensuring that this happens. 

Notice that PDDL 2.1 does not allow direct asser- 
tions that states hold for a period of time, but rather 
uses action duration to indirectly affect the amount of 

time that propositions hold during a plan. More gen- 
erally, PDDL preserves the notion of preconditions and 
effects from STRIPS, which simply doesn’t make sense 
when considering plans with overlapping concurrent ac- 
tivities. The stability condition described above is more 
than a persistent precondition, in that it outlasts the 
end of the action. PDDL has no mechanisms to specify 
such requirements. 

Exogenous Events 
Consider a domain containing a spacecraft that collects 
data which can be transmitted back to Earth only at 
specific times. PDDL 2.1 forces this to be modeled 
using constraints on the times that communication ac- 
tions can begin and end. This must be accomplished 
by using a conditional effect that enumerates, in the 
condition, the possible start times for the communica- 
tion windows. For instance, suppose that communi- 
cation windows are open from times 1 to 5 ,  and from 
times 7 to 10. The model in Figure 2 describes how this 
works. Notice also that we have a function compute- 
open-window-duration that determines how long the ac- 
tion takes based on the start time. 

While this enforces the correct behavior in the sense 
that communication windows are open a t  the correct 
times, it doesn’t actually have the desired semantics; 
if a use-window action occurs at a time when no win- 
dow is available, the action occurs and uses time, but 
the communication window is not open for use, when 
in fact we would like the action to fail. Furthermore, 
this approach requires rewriting the model for each new 



(:durative-action use-window 
:parameters (?s - ground-station) 
:duration (= ?duration (compute-open-window-duration(?s ?start)) 
:condition (at start (closed ?s))) 
:effect (and (when (or (and (> (?start 1)) (< (?start 5 ) ) )  

(and (> (?start 7)) (< (?start 10)))) 
(over-all (in-use ?s)) 
(at end (not(in-use ?s)))))) 

Figure 2: Exogenous Events in PDDL 2.1 

situation. In particular, the conditions and the func- 
tion compute-open-window-duration now must be re- 
vised for each new set of communication windows de- 
sired. 

The problem is that PDDL does not allow the user to 
specify specify exogenous events that are known to be in 
the plan. For a treatment of exogenous events in tem- 
poral planning we refer the reader to (Smith & Jonsson 
2002). Exogenous events require no explanation, and 
may establish states that can be used by other actions. 
Often, a null action is assumed to have established all 
the propositions in the initial state; the ability to in- 
clude many such exogenous actions at different times is 
therefore a natural extension to planning domain initial 
states. Including exogenous events will make domain 
models more general; for example, the constraints in 
the satellite domain governing communication activi- 
ties can be removed, and a general condition establish- 
ing the existence of a communication window can be 
used instead. The initial state will contain a listing of 
all communication windows. 

Continuously Varying Quantities 
Suppose we have an aircraft that can be refueled in 
flight. We would like to model the amount of fuel in the 
fuel tank while the aircraft is both consuming fuel and 
being refueled. As pointed out in (Fox & Long 2003), 
PDDL 2.1 offers two options for modeling this domain; 
discrete durative actions and continuous durative ac- 
tions. Discrete durative actions force all modification 
of the fuel amount to occur at the end of the action. 
Under some circumstances this assumption eliminates 
plans that are legal. Suppose the plane has 5 units of 
fuel left when the refueling action begins, and consumes 
1 unit of fuel per unit of time. Suppose further that 
the refueling operation adds 20 units of fuel but takes 
10 units of time. Modeling with discrete updates, the 
plane would be out of fuel before the refueling action 
finishes. 

Continuous durative actions allow the fuel state to be 
continuously updated, and so the situation described 
above can be avoided, since the net fuel change is to 
add one unit of fuel per unit of time during refueling. 
~ n i s  increased power c~rnies ai a iiigii pice. The fim- 
tion governing the amount of fuel must be evaluated 
at arbitrary points during the action, and this imposes 
strict requirements on concurrent actions updating the 
same numeric quantity in the plan. 

-. . 

The requirement for continuous updating of variables 
results in complex and overly restrictive semantics. It 
is unnecessary to allow such unrestricted access to  con- 
tinuously varying quantities. First, (Fox & Long 2003) 
indicate that plan validation only checks the values of 
continuously varying quantities at finitely many points, 
which implies that high order nonlinear functions can- 
not be validated. Thus, the power of the approach is 
not actually used. It is not clear whether such high or- 
der variations are simply forbidden, or whether model 
correctness is sacrificed in such cases. Second, modelers 
usually have a good idea of the conditions under which 
values of variables are needed, and can build the mod- 
els to correctly account for these situations. As pointed 
out in (Fox & Long 2003), an alternative model is pos- 
sible in which the correct value of the fuel was only 
guaranteed to be visible at the start and end of the ac- 
tion. The action of refueling would change the rate of 
fuel consumption, necessitating a new action, Flying- 
and-Refueling. After the completion of the refueling, if 
further flying was needed, then Flying would resume. 

As discussed in (Fox & Long 2003), a model such as 
this one is weaker than the model using continuous du- 
rative action, in the sense that more states are needed, 
more parameters may be needed to propagate values 
through Flying-while-Refueling, and there is no way to 
access the value of fuel in the middle of the Flying or 
Flying-while-refueling actions. But the need for doing 
so has been eliminated, because the Refueling action 
now changes the state t o  Flying-and-Refueling, and all 
that is needed is the value of the fuel level at the end 
and beginning of the actions to ensure the fuel value is 
propagated correctly. The arguments in (Fox & Long 
2003) indicate that all possible concurrent actions af- 
fecting fuel may need to be considered. While this 
is true, the approach taken in PDDL 2.1 actually in- 
fers these concurrent actions during the plan validation 
phase, and assumes that checking the endpoints of the 
actions is sufficient to validate the constraints. In situa- 
tions where this is not sufficient, the modeler must take 
the burden on, to the extent they see fit when modeling 
the application. Thus, the PDDL 2.1 approach makes 
the commitment to  model fidelity for the modeler, and 
is inappropriate h r  mme complex cases. 

Resources 
PDDL 2.1 uses numeric expressions to model resources. 
We have seen examples of resources modeled this way in 



(:durative-action fly 
:parameters (?x - airplane ?y - waypoint ?z - waypoint) 
:duration (= ?duration (travel-time ?y ?z)) 
:condition (and (at start (at (?x ?y))) 

(over all (inflight ?x)) 
(over all (>= (fuel-level ?x) 0))) 

(at end (at (?x ?z))) 
(at start (inflight ?x)) 
(at end (not (inflight ?x))) 
(decrease (fuel-level ?x) (* #t (fuel-consumption-rate ?x))))) 

(:durative-action midair-refuel 
:parameters (?x - airplane) 
:condition (inflight ?x) 
:effect (increase (fuel-level ?x) (* #t (refuel-rate ?x)))) 

:effect (and (at start (not (at ?x ?y))) 

Figure 3: Flying and Refueling in PDDL 2.1 

Figure 3. However, this approach makes it difficult to 
do some very useful reasoning about resources. Tech- 
niques like edge finding (Baptiste & Pape 1996) and 
resource envelopes (Muscettola 2002; Laborie 2003) re- 
quire an explicit notion of activities using resources in 
order to  work. In addition, modeling resources solely 
through numeric expressions tends to hide information 
from humans reading models, as well as forcing mod- 
elers to  hide obvious resources in the model by using 
the numerical expressions. While techniques like TIM 
(Long & Fox 2000) can be used to  infer the presence 
of resource behavior in planning domains, we feel there 
are significant advantages to explicitly declaring these 
parts of domain models. Note that complex numeric 
expressions may still be necessary to determine the ac- 
tual amount of resource consumption or production; for 
example, a model of solar panel power production will 
require complex numerical constraints to  determine the 
actual impact on the resource. However, an explicit 
declaration of resources and explicit declaration of re- 
source use by actions can be beneficial. 

Infinite and Dynamic Domains 
In order to ensure that the number of actions and 
propositions is finite, PDDL permits only a finite num- 
ber of objects, which must be explicitly enumerated, 
and does not allow arguments to actions or predicates 
to include numeric expressions (numbers being the only 
non-finite domains permitted in PDDL). It also forbids 
functions that return objects, which could be used to 
introduce infinitely many new objects. The justifica- 
tion for these restriction is that many planners rely on 
being able to enumerate the actions and propositions in 
a planning problem.' 

Since PDDL is designed for the planning competi- 

'A philosophical argument is also offered: that there are 
only finitely many objects in the world; we agree that this is 
technically true, but for all practical purposes it is false, and 
the number of possible actions in many worlds of interest is 
essentially infinite. 

tions, tailoring it to the limitations of the planners com- 
peting is reasonable. However, from the perspective of 
modeling certain real-world domains, having such a re- 
quirement encoded in the language definition is prob- 
lematic. For example, (Fox & Long 2003) point out 
that it is impossible to write a PDDL action to fly at a 
certain altitude. Indeed, an action to  drive at a given 
speed or a given distance would also be ruled out for 
the same reason. 

This requirement also makes PDDL unsuitable for 
modeling software domains. Software domains include 
information integration, web services, data processing, 
and other domains where the agent interacts in a soft- 
ware environment. These domains are typically char- 
acterized by a large, incompletely known and often dy- 
namic universe. Since PDDL 2.1 was not designed to 
handle sensing, we will defer the discussion of incom- 
plete information. Instead, we focus on dynamic uni- 
verses. In PDDL 2.1, actions that create new objects 
must be modeled by enumerating all objects that might 
appear during planning ahead of time, either explic- 
itly or implicitly. For example, in the Settlers domain, 
newly created machines are modeled using an integer 
counter. Such an approach is inadequate for describing 
software domains. For example, consider the following 
command, which creates a new archive of the files in 
directory -/papers: 
z i p  papers .z ip  -/papers 

This action fails to conform to PDDL restrictions in 
two ways; first, it creates a new object, the archive 
'/papers. z ip .  Second, one of its arguments is a string, 
which is not a finite type. Actually, both arguments 
are strings, but one of them, -/papers, designates an 
existing object, a directory, and the number of direc- 
tories is finite. Following the general advice in (Fox & 
Long 2003), we could use the directory as an argument, 
rather than referring directly to its pathname, so that 
argument would be finite. However, the other argument 
designates a file yet to be created, so there is no existing 
object for which it is an attribute. 
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One might insist that such open-ended choices in ac- 

tion selection create an unreasonable burden for the 
planner, but nothing could be further from the truth. 
Either the choice will be constrained by the problem 
specification, in which case there may be no choice at 
all, or it will not, in which case the choice doesn't mat- 
ter; any random string will suffice. From a constraint 
reasoning perspective, it is a trivial problem. 

String and numeric arguments are ubiquitous in soft- 
ware domains. In addition to file creation, many image 
processing commands take numeric arguments, such 
as thresholds, values for scaling, rotating, brightening, 
compression factors, etc., and positions for cropping or 
overlapping images. None of these values are attributes 
of existing objects, but they are controls that the plan- 
ner should be able to set, because whether, and how 
well, the plan achieves the goal depends on the val- 
ues of those numeric arguments. For example, a user 
may want to scale an image to just fit on her screen, 
maintaining the same orientation and aspect ratio. The 

vertical extents of the image and of the screen. Another 
user may want to combine two images which are at 
different resolutions. Doing so will require scaling one 
of the images so that its resolution matches the other; 
the appropriate scale value depends on the resolutions 
of the two images, and possibly additional constraints, 
such as memory and the resolution of the final image. 

One could imagine handling the object creation by 

created. For example, we could have a few hundred 
"blank" file objects, and instantiate them as needed 
when new objects are created. However. this is not just 
inelegant and inefficient; it is also inadequate. Consider 
the reverse of the archive creation action above: archive 

unzip papers .z ip  

This action will create new copies of every file in the 
archive papers.  z ip ,  preserving the original directory 
structure from "/papers, but rooted in the current di- 
rectory. Since a single action can create an unbounded 
number of new objects, listing all of the new objects up 
front is clearly infeasible. 

(Fox & Long 2003) raise the concern in connection 
with infinite domains that extensional interpretations 
of quantified preconditions are no longer possible. This 
is not a problem in the examples we have discussed 
because, although domains are dynamic, in any given 
state, any object domain is finite and can be directly 
determined from the execution trace that led to it. In 
fact, there is no way to  introduce infinite numbers of 
new objects unless actions can have an infinite num- 
ber of effects, which impossible to describe unless we 
already allow quantification over infinite domains. In 
other words, there is no way to get quantification over 

A related issue is that an extensional interpretation 
of universally quantified goals may not be possible, be- 
cause the universe a t  the time the goal is achieved is not 
known at planning time, even if the agent has complete 
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information and all actions are deterministic. Indeed, 
there could be many goal states with quite different 
universes, depending on the execution traces followed 
to reach the goal. However, this can be solved quite 
simply by interpreting the Herbrand universe with re- 
spect to the initial state, as is done in (Golden & Weld 
1996). 

Domain Description Languages: An 
Ontological Approach 

The essence of modeling is abstraction, and the essence 
of abstraction is simplification - omitting details so that 
the model is simpler than the thing being modeled. 
Choosing the right abstraction for a problem makes the 
problem much easier to solve. Domain description lan- 
guages should enable modelers to  abstract away details 
of planning domains that they feel are irrelevant to the 
task at hand. 

There is an implicit agenda in the expansion of PDDL 
to gradually encompass more and more features that 
are needed for various planning domains. One pos- 
sible conclusion of this is a grand-unified domain de- 
scription language (GUDDL). As we have pointed out 
in this paper, some of the problems with PDDL 2.1 
stem from an attempt to shoehorn time and resources 
into a STRIPS-based language. We anticipate similar 
problems as other features are encompassed. Domain 
modelers will tend to reject a language with unneeded 
features if the presence of those features proves to be 
a burden, either in increased computational complexity 
or increased modeling difficulty. 

STRIPS and earlier versions of PDDL impose one 
set of abstractions: instantaneous action, the STRIPS 
assumption concerning persistence of states, and so 
on. Planning frameworks like CAIP (Frank & J6nsson 
2003) impose different abstractions, such as the fail- 
ure to distinguish state and action. PDDL 2.1 offers 
yet another set of abstractions, the ability to assert 
only local temporal constraints and tying temporally 
extended states to actions with duration, and the free- 
dom from modeling the interaction of some concurrent 
actions that modify the same quantities. Incomplete 
information, offers additional options for abstraction. 
Some representations opt for a list of all possible states, 
others for a probability distribution over all possible 
states, in which the underlying representation is propo- 
sitional. Still others reject the propositional abstrac- 
tion, to allow sensors that return (possibly continuous) 
values, but give up explicit case analysis afforded by 
enumerating states. 

It is unlikely that a modeler will model a behavior in 
two different ways in the same model. Having a lan- 
guage that supports different abstractions of the same 
underlying concept also makes the language clumsy to 
use and makes model validation more difficult. While 
some of tiir ihtiactions are hierarchicd, forcing B plan- 
ning domain to  support the most concrete leads to both 
inefficiency and frustration on the part of domain mod- 
elers who don't use the power of the language. Fur- 
thermore, it is unlikely that different abstractions will 



be needed in the same model A domain modeler is un- 
likely to want to put both continuously changing quan- 
tities and discretely changing quantities into the same 
model, for example. That same modeler, however, may 
want unary resources in a model which also has con- 
tinuously changing quantities. In order to unify the 
languages, the resulting language will have to be less 
abstract, and the language will become more unwieldy. 

A Common Core 
As an alternative to a single language for all planning 
domains, we propose a common core for use in many 
planning domain description languages. The core must 
contain the essential elements of all planning domains, 
and provide a common set of concepts that can be used 
to develop many planning languages. These languages 
can have different syntax, and different underlying im- 
plementations that play to the strengths of the particu- 
lar additional components, but depend on the same set 
of underlying ideas. 

We believe that all planning domains require the fol- 
lowing components: 
1. A notion of state. States must be allowed to contain 

numerical arguments, but are fundamentally discrete 
statements about the world. 

2. A notion of objects or attributes, which take on states. 
3. A notion of the conditions governing state transitions. 

States may either end on their own or be terminated 
by an event or action. The rules governing these state 
transitions must be encoded in the domain descrip- 
tion. Sometimes these transitions may be uncertain, 
and sometimes they may be conditional, but they 
must be described. 

4. A notion of the requirements states impose on plans. 
States must be explained; either an event establishes 
them or they are exogenous. Furthermore, states gen- 
erally impose conditions on the plan. Again, some- 
times the requirements may be conditional. 
Modelers must describe the set of objects that exist 

in the world, and enumerate the states they can take on. 
For example, a satellite object may take on the states 
Take-Picture, Idle, Communicate or Slew. This is 
a generalization of the idea that propositions are either 
true or not true at any given instant. By declaring 
the set of states an object can take on, the modeler 
also declares a number of mutual exclusion constraints. 
That is, objects can be in only one state, and the set of 
possible states is enumerated in the model. Notice how 
the semantics of negation are affected. In the example 
of the satellite domain, if a satellite is not Idle then by 
closure it must be in one of the other states. 

A state takes the form P(z l...x,) where P is a predi- 
cate and z, are parameter variables. We will refer to the 
additional variables op,  s p  and ep, the object, start and 
end variables of the state. Extending the set of variables 

'A potential exception to this is unified agent models, 
in which models of different levels of abstraction must be 
coordinated. However, it is unlikely that the same planner 
will work with the different levels of abstraction. 

this way makes it easy to post precedence constraints 
among states, and also to make decisions about what 
object of a class of objects takes on a required state. 
The constraint P, < P, is implicitly understood to hold 
for all states. We view these additional variables as be- 
ing implicit parameters to all states. 
Domain Axioms provide the means to explain states, 

assert the conditions that states impose on plans, and 
describe the rules of state transitions. This is accom- 
plished using constraints on the variables of states. 
Domain axioms take the form: P(x1 ... 2,) AG(X) -+ 
Q(y1 ...y 3 )  A H ( Z )  where X c {xi ... xi} and 2 C 
( 2 1  ... xi,y l...yj}, G is a set of conditions and H is a 
set of constraints. If a state P is in the plan, then 
some other states must be in the plan, and some con- 
straints must hold among the variables representing 
those states. Notice that the states that must be in the 
plan are not necessarily new states; they can be states 
established some other way. Thus, planners must de- 
cide whether to reuse existing states or establish new 
state instances. The conditions G allow US to specify 
that some of the variables in P must take on certain 
values for the axiom to apply. The constraints in H 
allow us to impose limitations on the possible ground 
states Q that can be in the plan along with P. 

The conditions can be used to dictate the transitions 
between states. Constraints can be posted among the 
parameters to limit the legal sets of predicates as well 
as imposing ordering constraints among the states in 
the plan. As an example, suppose that in the satellite 
domain a Take-Picture can be followed by another 
Take-Picture or an Idle state. The rules 
Take-Picture(p, s)A eq(s,take-picture) -+ 
Take-Picture(q, t) ,eq(etpl, stp2)  

Take-Picture(p,s)A eq(s,idle) -+ 
Idle0 ,eq(etp,si) 

ensure these conditions hold. 
Constraints are also a natural way to model both 

disjunctive preconditions and conditional effects. For 
example, the rules 
Take-Picture(p, s)A eq(p, idle) -+ 

Take-Picture(p, s)A eq(p,warmup) -+ 

indicate that two possible preconditions can hold for a 
Take-Picture action, either an Idle action or a Warmup 
action. This easily enables back chaining from exoge- 
nous events. 

Constraints also replace numerical expressions in 
PDDL 2.1. Let us consider the in-flight refueling model 
of Figure 3. This would be modeled in the following 
way: the action 
Fly(s,i,c,y) A eq(s,refuel) + 

Idle(), eq(stp, e , )  

Warmup0 eq(st,, e,) 

Fly-and-refuel (t, j ,  d, 6) fuel-cons ( s f ,  e f ,  i, c) , 
eq(j, c) , e q b ,  b) 
computes the fuel consumption for the Fly action, 

which determines how much fuel is available when the 
refueling begins. We post equality constraints to en- 
sure that the destination of the original Fly operation 
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persists in the new action. The Fly-and-Refuel action 
looks similar: 

.Fly-and-Ref ue l  ( s ,  i, c, y) A eq(s  , f l y )  + 
Fly(t , j ,  d, b )  , fuel-prod(sf,  e f ,  i, c )  , q ( j ,  c )  ,eq(y. b )  
In this case, we post the constraint that fuel is pro- 

duced instead of consumed, but otherwise the state ax- 
ioms look very similar. 

Exogenous events are simply assertions that actions 
take place in a plan. One way of thinking about ex- 
ogenous events is that they are simply a set of sim- 
ple domain axioms that always hold. Since they are 
volatile in the same way that goals and initial states 
are, they properly belong in the initial state file, It is 
very convenient, however, that we can express them us- 
ing the same underlying concepts that we use to express 
the domain axioms. Returning to the communication 
windows example, we can express the assertion that a 
communication window is in a plan as follows: 
TRUE + Corn-Window() 
and constraints that a communication window is fol- 
lowed immediately by a closed communication window 
are written 
TRUE + 

Corn-Window() , No-Corn-Window0 , eq(e,, s,) 

Pros and Cons of a Constraint-Based 
Represent at ion 
A number of aspects of PDDL 2.1 make it difficult to 
build planners that work by means other than progres- 
sion. For example, suppose that a goal is to fly an 
airplane to a city, but nothing in the goal specifies the 
remaining fuel. A progression planner can simulate the 
Fly action with the current fuel and check for action 
success. However, a regression planner must figure out 
how to invert the functions in the domain axioms to 
determine the minimum amount of fuel needed to per- 
form the action in the city of origin. Constraints make 
this easier, since they are simply relations on the le- 
gal vaiues of the variables. In a sense, however, this 
moves the problem to the underlying support system 
to enforce the relation correctly. However, this is not 
required. Domains can be written that involve only 
successor state axioms, or only involve explanatory ax- 
ioms. Thus, if a modeler knows that only progression 
planning is needed, only the successor axioms need to 
be put in the model. 

As with PDDL, generic states can be introduced 
without fixing the entity that takes on that state. Since 
this is just another variable, it can be constrained just 
like any other variable. However, as we said earlier, 
mutual exclusion is enforced on objects as a part of the 
semantics of objects. For PDDL, this must be done by 
other means, either using hand-coded domain axioms or 
propositions or numeric expressions to simulate unary 
resources. 

STpdpS &ori to eET&re ih& ycpe- 
sitions that are not negated persist in time. This is a lit- 
tle harder t o  do using our framework. Since properties 
of objects are manifested as parameters in the states, 
we need to ensure they are propagated from state to 
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state using equivalence constraints, as we saw in the 
Fly-and-Ref uel example. 

PDDL actions can change the value of many propo- 
sitions at once. Synchronizing state changes using the 
concepts we describe is also simple. We can write a 
rule that forces many objects to change their states all 
"simultaneously". 

An advantage of our approach over PDDL is that we 
can write rules that require unconditional state changes. 
However, in some cases, we are actually forced to do 
so; an example is "idle" states where we would like to 
persist some state information. 

We have eliminated explicit actions from our repre- 
sentation. Part of the reason for this is that, when 
states have duration, there is a blurring of the distinc- 
tion between temporally extended states and actions 
with duration. In many domains, some properties that 
appear "static" are really "active"; a spacecraft point- 
ing at Earth is performing many functions in order to do 
so, for example. Finally, some states may only hold for a 
short time, as opposed to continuing indefinitely. Since 
actions can be mimicked using parameters of states, 
and since most propositional planners assume actions 
to be instantaneous, we feel this imposes no great bur- 
den. As we discuss later, actions can be introduced at 
the syntactic level if desired. However, the underlying 
semantics is concerned only with state transitions. 

Extensions 
How can the core be extended? We describe three prin- 
cipal extensions: states with temporal extent, uncer- 
tainty, and dynamic domains. All of these extensions 
are very natural and the fundamental concepts we have 
described above make it easy to create languages that 
support these features. 

State Duration and Metric Temporal 
Constraints 
States can be extended to have duration, and con- 
straints then govern duration and the temporal re- 
lationship between states. As an example con- 
sider the Take-Picture state. Suppose its duration 
is 24 seconds. Then we have the following rule: 
Take-Picture ( p ,  s) + 

addeq(stp, 24, e tp )  
States are now more properly called intervals. Note 
that this is a very natural extension given the represen- 
tation described previously; we merely add more con- 
straints on the start and end variables of states. 

More generally, we can post any constraints in Allen's 
algebra. For example, consider the satellite domain in 
which the Take-Picture state required the satellite to 
be S tab le  for 5 seconds before and after the action. 
Consider the domain description in Figure 1. Compare 
it to the following: 
Taire-pi C. -L-- Lure :-E. SI + 

Stab le ( t ) ,  eq(s , t ) ,  
addeq(ss, -5, ST) ,addeq(es, 5, eT> 
We can concisely express the constraint that a 

Take-Picture state requires a S tab le  state that "con- 



tains” it, and express the exact constraints that must 
hold between the temporal variables of the states. Fur- 
thermore, we can also ensure not only that some state 
occurs in the plan, we can ensure that it happens at a 
particular time. 

If states have duration, we can no longer employ the 
STRIPS axiom, States do not necessarily persist indef- 
initely; we must write the successor axioms and frame 
axioms for all states. However, this does not impose a 
serious burden on the modeler in most cases. A domain 
axiom can indicate that a particular state can last in- 
definitely, but their successors must be enumerated in 
case the state is terminated. For example, consider the 
Idle state in the satellite example. In the event that 
a state terminates, we must describe what states can 
follow it. Termination is accomplished by assigning or 
constraining the duration of the state. Defining succes- 
sors can be done a number of ways, but an easy way is 
to use a parameter of the state to define the possible 
successors, then use conditions as we have described in 
previous examples. The rules would look like this: 

Uncertainty 
Uncertainty can be added in several different flavors to 
accommodate the needs of the domain. For example, 
in a contingency planning context, one might only wish 
to provide the set of possible outcomes. Those wishing 
a description more like MDPs can provide probability 
distributions over action transitions. If we revisit the 
satellite domain, we see that the rules need to be aug- 
mented in these cases. Suppose that trying to take a 
picture may fail because the shutter does not open. We 
can do so by introducing a special set of world-choice 
variables for each state, which are “set” by the world. 
For example, suppose the Take-Picture action either 
results in a Camera-Ready state or a Camera-Broken 
state, conditional on an outcome, !o, which the planner 
has no control over: 
Take-Picture ( p ,  s )  
A eq(s , take-pic) , eq(!o, ready) -+ 
Take-Picture ( p ,  s )  
A eq(s,take-pic) ,eq(!o,broken) + 
Camera-Ready0 ,eq(etp, s,) 

Camera-Brokeno ,eq(etp, sg) 
A richer representation of uncertainty allows us to 

specify a probability distribution over possible out- 
comes. We can augment the above example by as- 
sociating probabilities with the different values of the 
outcome variable !o. Notice we need only do this for 
successor state transitions, not explanatory axioms. 

A more complex task is to handle continuous proba- 
bility distributions over the outcomes of actions. Uncer- 
tainty can be represented in terms of unknown values 
of variables. For example, uncertainty over the start 
time of an event can be expressed as an interval repre- 
sentation for the start-time variable. Again, we must 
take care to distinguish between uncertainty, where the 
world chooses, and temporal flexibility, where the agent 
chooses. More sophisticated representations can add 
probability distributions over values in the interval. For 

example, if the Take-Picture action results in an un- 
certain amount of onboard storage use, we can imagine 
extending the set of constraints to involve continuous 
probability distributions as constraints ever quantities. 
Sensing actions can constrain the parameters of the dis- 
tributions, for example. However, the fundamental no- 
tion of constraints over variables in the states still holds. 

More importantly for software domains, we can rep- 
resent uncertainty over the value of an object attribute, 
such as the pathname or size of a file. Here we see a sig- 
nificant advantage over propositional representations, 
because these attributes have infinite domains; repre- 
senting the possibilities as a list of worlds is impossible. 
Instead, we leave the domain of the variable open, to  
indicate that it could have any value, or partially open, 
to indicate that it is restricted to a particular subset of 
values. 

In addition to uncertainty over the attributes, we 
can represent uncertainty over the objects themselves 
using the same representation. It is not necessary to  
list all objects that could exist in the world; it is suf- 
ficient to represent the actions that can discover new 
objects and dynamically introduce new variables as 
needed to describe new objects as they are discovered. 
We can represent sensors that return arbitrary num- 
bers of new objects by making the world-choice vari- 
ables !o universally quantified (Golden & Weld 1996; 
Golden & Frank 2002). 

Dynamic Domains 
Dynamic domains arise both in the context of sensing, 
when a new object in the world is detected, and ob- 
ject creation, when an action in the plan leads to  the 
creation of new objects whose states must be reasoned 
about. We can handle sensing and object creation US- 
ing a similar approach. A newly created value is sim- 
ilar in most respects to a newly sensed value, the dif- 
ferences being that, in the case of object creation, the 
world changes and the planner has some control over the 
outcome. We can represent a new object, such as the 
output of a data-producing action, as a variable whose 
value is a skolem function of the corresponding action. 
As in the case of sensing, if the number of objects that  
will be created is unknown (because it depends on an 
unknown number of inputs, for example), we can repre- 
sent the effect using universal quantification, where one 
variable is used to represent a set of objects. 

A simple extension to the form of domain axioms 
enables this. Recall that domain axioms can lead to  the 
creation of a new state for an object, if an existing state 
isn’t appropriate. Thus, there is already precedent for 
constraints that hold to  justify the existence of a new 
state. We can extend the form of domain axioms to  
enable the creation of new objects as well. For example, 
consider the zip file creation action. Let us suppose that 
the states a zip file can be in are Idle, Compressing, 
Uncornpressing , Moving, and the properties of interest 
of zip files are its size, whether or not it is compressed 
(representcd by a boolean) and its location. We can 
write this as follows: 



.4 

Zip(2,p) + 
new Zip-File, Idle(rn,s ,c)  ,eq(c , fa lse)  
zipsizeof ( s , p >  ,eq(rn, I )  ,eq(si, e,) 
The keyword new indicates that. the zip file we are as- 

serting properties of is created and is like the approach 
used in (Golden 2002). The semantics of this can ensure 
that no state before the time of creation can be asserted. 
However, we can also impose the usual constraints on 
the I d l e  state of the file, along with asserting the files 
initial size, location, and compressed state. 

Syntax 
The fundamental construct we have used in the descrip- 
tions above is that the presence of a state in a plan im- 
plies some other states must exist, and that there are 
some constraints. We can wrap these ideas in a number 
of convenient syntactic construct,s. We will describe a 
variety of these in this section. 

We will begin with simple domains where states do 
not have duration and metric temporal constraints are 
not used. We can use syntax that posts ordering con- 
straints on the states directly: 
P < Q and translate this into the constraints on vari- 
ables. If temporal constraints and states with duration 
are used, we can use the Allen's algebra names or other 
convenient labels to express temporal constraints. In 
the case of the constraint that the satellite must be sta- 
ble while taking pictures, this constraint is written 
Take-Picture ( p ,  s )  + 

contained-by[5][5] Stable( t )  
Equivalence constraints can be posted by simply us- 

ing the same variable names in the parameter lists of 
the states. 

For those who want to build models with a dis- 
tinction between state and action, this can be accom- 
plished. Actions would depend on objects being in par- 
ticular states, and would ensure that some objects have 
new states. A simple transformation would augment 
cach state with action parameters m d  the axioms can 
be rewritten to ensure that the proper constraints are 
posted among the variables of different states. 

As we said previously, since properties of objects are 
represented by parameters of states, a mechanism is 
needed to propagate values to states where they are 
involved in constraints. However, syntax can conceal 
these details from the modeler. For example, objects 
can be created with a fixed set of variables, and the 
states can use these variable names in constraints. The 
underlying reasoning system can then decide whether 
new variable instances are needed and post the ap- 
propriate constraints. In the satellite domain, Idle 
states normally would propagate the amount of data 
in the onboard storage unit to the next Take-Picture 
or Communicate state. However, the action need not 
name the variable representing the data amount, and 

variable 
representing the last computed quantity in the con- 
straint involving the next state. Notice that this syntax 
is similar t o  the PDDL 2.1 syntax, but with a different 
interpretation. 

*1 I,IW . iinrieriying systpm ycc!b simply 

Idle + Slew 
Idle -& Take-Picture 
Idle Communicate 

... 

Figure 4: A simple state machine representation of the 
satellite domain. The rules implied by the state ma- 
chine appear below the figure. 

The astute reader will notice that, since mutual ex- 
clusion is enforced on object states, that state machines 
or timed automata are a good representation for many 
planning domains. The transformation between these 
representations and our fundamental language of states 
and constraints is also very straightforward. Rules re- 
lating the states of different objects are represented by 
synchronizations across different state machines. 

As we said previously, domain axioms can be thought 
of as implications that always hold. However, another 
way of thinking about them is as partial plans. As such, 
we can assert that actions take place and have con- 
straints among their variables, without deciding when 
they take place, or even whether they are ordered or 
not. Syntax describing partial plans can take a wide 
variety of forms. 

Finally, resource declarations can be added to a lan- 
guage to augment numerical constraints, enable tech- 
nologies like edge finding and envelope calculations, and 
to add descriptive clarity to model definitions. With 
an explicit resource declaration, we can replace axioms 
designed to enforce mutual exclusion with a unary re- 
source shared by many actions, as well as numerical 
expressions meant to simulate resources. 

For example, consider the case of a unary resource, 
stability, used by 5 different actions: three Take-Picture 
actions (one for each of three instruments on a satellite), 
communication, and slewing. All the actions but the 
slewing action require stability, and slewing makes the 
satellite unstable. We might write this model as follows: 
Resource unary s t a b i l i t y  
Take-Picture ( p ,  s) + 
Communicate()+ 

Slew 0 + 

uses S t a b i l i t y  (st - 5,et  + 5) 

uses S t a b i l i t y  ( s t ,  e t )  

iises Sta'ni i ity (.st, e t>  

Each state now declares how it uses the resource. The 
usage time can be constrained using mathematical func- 
tions of the start and end times of the activity in any 



way the domain modeler sees fit. 
Now consider a mutli-capacity reusable resource such 

as power. Resources now must declare their resource 
impact as well as the time span during which the re- 
source is affected. As an example: 
Resource multi reusable power 5 
Take-Picture(p, s) + 
uses power (st - 5, et + 5 , 5 )  

Finally, we consider renewable resources, where each 
activity can consume the resource or produce the re- 
source. In this case, we must allow for the possibility 
that an activity could change the resource in different 
ways at  different timepoints, in general. 
Resource multi renewable power 5 
Take-Picture ( p ,  s) + 
uses power (st - 5,5)  

This looks quite similar to the declaration of a func- 
tion in PDDL, but there is an important difference: it 
is easier to understand that the resource is a complex, 
flexibly scoped constraint that can be reasoned about 
as a single entity. This simplifies modeling as well as 
revealing the reasons for mutual exclusion of actions. 
The computational burden is wholly shifted to the im- 
plementation, where it can be efficiently handled in any 
way the implementer sees fit. AI1 of these declarations 
can be converted into simple arithmetic constraints, or 
they could be used as the input t o  edge finding, enve- 
lope calculations, or other sophisticated techniques. 

A final syntax issue is that of functional representa- 
tions versus object based representations. PDDL 2.1 
uses a functional representation, and allows objects 
to be passed as arguments to functions. Other plan- 
ning domain languages use a notion of objects with 
attributes, where attributes can be accessed using syn- 
tax that resembles that in object oriented programming 
languages. Neither of these approaches is fundamen- 
tally incompatible with a constraint-based representa- 
tion such as the one we have proposed. The two ap- 
proaches offer different representational transparency in 
the model and in the way in which planners access the 
information, but can represent the same things. 

A Challenge for the Community 
In this paper, we do not advocate a single planning 
domain description language. Even though the funda- 
mental concepts we have described appear quite general 
and powerful, it would be easy to create a single, very 
clumsy language supporting many features using these 
concepts. However, we believe that using these concepts 
as a starting point will make it easier for language de- 
signers to extend the basic language in a wide variety 
of ways and create good languages for accomplishing 
many modeling tasks. 

Several existing plan domain description languages 
make use of some of the ideas presented here. Numerous 
languages have more flexible temporal representations 
(J6nsson et al. 2000; Smith & Jonsson 2002), use con- 
straints rather than functions (Frank & J6nsson 2003), 

and use dynamic domains (Golden & Frank 2002). All 
of these languages have their pros and cons. Language 
designers should be sensitive to the strengths and weak- 
nesses of these languages for the various purposes they 
are used for, and consider how the language is likely to 
be used. The challenge for the planning community is 
not to search for one language that fits all needs, but to 
search for the core elements of languages that are most 
suitable for modeling different planning domains. 
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